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ABSTRACT 

Let us consider the N-guns with unit length of sides in the plane. What is 
the maximum of the arithmetical mean of the length of diagonals? We give 
an elementary solution for this problem and some more general ones. We 
deal with continuous analogons too. 

1. W. Blaschke [1] has considered the integral 

'fore I = A2 f(rpe)dtpdte,  A is fixed, 

where P, Q are points of the bounded convex domain D in the plane, reQ is the 
distance between P and Q, tp and tQ are area-ekments of D, f ( x )  is a function 
such that I exists and i f ( x )  < O, i f ( x )  < 0, and A is the area of D. He proved 
that I attains its maximum only at circles. His main device is the well-known 
Steiner's symmetfising procedure. 

Making some extension of this procedure, T. Carleman has weakened the 
conditions of convexity of D and concavity o f f ( x ) .  

In this paper we shall deal with an analogous problem raised by I. Vincze,* 
namely the maximalization of the expression 

Jr = ---if- g(re• ) dsl, dst2 , L is fixed, 

where P, Q are points of a closed curve C, rea is the distance between them, 
st,, sa are arc-length parameters, L is the length of C and g(t) is a function about 
which we make some assumptions. Our result is contained in 

THEOREM I. I f  the function g(t) is increasing and concave, the integral ~r 
attains its max imum only at circles. In particular, taking g(t) = t, the mean 
length of  chords of  a closed curve C does not exceed the value 2L/Tr 2 . 

We now mention some further results used in the proof of Theorem 1. In this 
direction see [3]. 

Received August 23, 1965. 
* Many thanks to him for his many suggestions to simplify the proofs. 
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We define a "system (Ai),," to be a sequence of points A1,A2, . . . ,A  N and 
AN +i= A~ (i = 1, 2,-.., N). Such a system will be called regular, which will be denoted 
by (R3, if the polygon A1, A2, "", AN is regular. In this case, the following state- 
ments are valid. 

THEOREM II. Making  use of  the notation rit = AiAi+l, i f  ril <= a, (i = 1, . . . ,N)  
and g(t) is an increasing, concave function, the inequality 

N [ 2 . 211r/ 2 ~z) 
(1) N-1 ~=t ~ g(r2) <= g[a  sm ~- sin -~ l given, N _ 2 4 ,  

is valid. The sign of  equality holds i f  and only i f  (Ai) N = (Ri) N. 

THEOREM III. For an arbitrary system (Ai) N the following relation is valid: 

(2) 2 r~/ ~ sin-if, ~ r~ 1 given, g >= 4, 
i = l  i = l  

where equality holds only for  ajfine images of  a regular system and their limit 
cases. 

2. To prove our theorems we need some notations and lemmas. 
Let be T the set of the affine transformations of our plane a. Then the lemmas 

below hold: 

LEMMA 1. Let us assume, that A,B,C,  are not collinear and the same is 
true for  A' ,  B', C' .  Then there exists one and only one "c ~ T for  which 

z(A) = A' 

~(~) = B '  

• ( c )  = c '  

hold. 

LEMMA 2. The parallelism of  straight lines and the ratio of  diversion on 
a straight line will remain unchanged after applying a ~ ~ T. 

LEMMA 3. I f  segments AB and CD are parallel, then 

;~(A)z(B): z(C)z(D) = AB:-C'D' 

LEMMA 4. A non-collinear system (Ai) n can be mapped into a regular one 

(Ri) N i f  and only i f  
a) RiRj parallel to RsR t implies that AiAy is parallel to AsAt. 

b) AiAj: AsAt = RiRj: RsRt 
i f  AiA ~ and A,A t are parallel. 

Proof. Only part of our lemma follows directly from Lemmas 3 and 2. But 
if a) and b) are satisfied by (Ai)n, consider z ~ T defined by z(R3 = As, i = 1, 2, 3 
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(see Lemma 1). (Obviously A1,A2,A3 cannot be collinear because in this case 
{AI}N would be collinear.) 

Let us denote z (Ri) by R~ (i = 1, 2,-.-, N), from condition a) and Lemma 2, 
A 4 and R4 must lie on the straight line parallel with A2A 3 and containing A 1. 
On the other hand 

AtR'4 = AxA4 = A2Aa (RtR4: R2R3) 

So R~. = A 4, etc. 

LEMMA 5. 

(3) 

Then 

and i f  we have 

then 

Let the numbers xi (xi > O) satisfy the relations 

Xj ~ X 1 "~ (Xj-IXj+I) 112 (j = 2, . . - , N - 2 )  

XN_ i --~ X t 

xj < Xl sinj sin (j = 2 , . . . , N - 2 )  

Xj<XI"[-(Xi_IXi+I) 112 for  some j ( I < j < N - 1 )  

( xj < x 1 s in j~ -  s in-~ f o r e v e r y j  ( I < j < N - 1 )  

y j =  xi /x ,  ( i = 2 , . . . , N - 2 ) .  In view of (ab) 1/2 <(a  + b)/2 Proof. Let 
(a, b > 0) system (3) implies that 

1 
y~ < 1 + ~  

1 
y3 < l + g  

1 
y4 < 1 + ~  

1 
(4) y, < 1 + 

v_L+ 1 Vl 
vl 2 v-~3 y3 

~3Y3 "I'~ -~sY3 

W~' 1 vi-___L 
Vi_i Yi-1 q- 2 vi+, 

1 Vk 1 Vk-2 
= ' ..... Yk-2 + - - - - -  Y~- I < l + -~ Vk_ 2 2 Vk Yk 

1 Vk 1 Vk-, 
= - 'Vk-x Yk- ,  + -~ v - s Y k  Yk < 1 +  2 

Yk < 1 + Yk+~ (N = 2 k )  

Yi+ 1 

(N = 2k + 1) 
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where 
(4) in matrix form 

(5) 

As 

L. GABOR [March 

vl,v2"",v~ > 0. Let v~ = sini (n/N). Suppose that N = 2k + 1 and write 

Y < A Y +  B.  

k 

~, a,j = 61 < 1, ( j  = 2,. . . ,  k) 
f = 2  

summing the relations of (5) we  get 

k k 

~, cjxj < M (c~= l - ~ i > O ,  M = ~ b 1. 
i = 2  11"2 

So every Yi is bounded: 

Yt <= M/cl" 

If yj < (AY)j  + Bj for some j (1 < j  < k) then we can increase the value of 
yj to y) so that 

Y ' =  (Y2,Ya,'",Yj-1 ;Y~-,Yj+I, "",Y~-I , yk )ES  = < U: U < AU + B >. 

Now we can increase the value of Yj-t because Yj-1 < lAY']j-1 + bj- t  if 
j > 2. This procedure can also be carried out for x~-2, '" ,x2 and x~+1,.--,x~, 
if they exist. Therefore if 

then 

(6) 

This equation has the solution 

Y = max U 
ll e S  

Y =  A Y + B  

( yO = < s i n ~ - i  sin > 
2 

But this solution is unique. For let y1 be any other solution of (6). 
_ y t .  Then W = A W  and so 

Iw2] = a231wal 

Let W-- yo 
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Summing these inequalities we get 

k 

]E cj I wjI -< 0 (c I = 1 - 6 i > 0, j = 2,. . . ,  k) 
j = 2  

Hence w~ = 0, j = 2, . . . ,  k. 
In the case N = 2K we can eliminate the variable Yk by replacing the last re- 

lation of  (4) into the preceding one. The new system Y < A ' Y  + B' can be con- 

sidered as (5) and the result is that 

B u t  

yj  --< sln ~ - j  sin , j = 2 , . . . ,  k -  1.  

Yk= < l + y k _ l  = < l +  sin k - 1 ) / s i n  = 

7g • 2 - -  sin k~-~ sin 2 ~--~(k - 1) + sin 2 2k 1 

sin2 ~ sin2 2-k sin2 - -  
2k 2k 

which completes the proof  of Theorem 1. (see Remark 1). 

LEMMA 6. Let the functions f ( t )  and g(t) be defined in [0 , c ] ( c>0)  and let 
us assume that f ( t )  = f ( c  - t), g(t) = g(c - t) for every 0 <_ t <- c. Let us denote 
by A (x ,y , z )  a function strictly increasing in x , y , z .  I f  the relations 

hold, then 

implies that 

f ( u )  <_ A { f ( v ) , f ( u  - v ) , f ( u  + v)} 

g(u)  = A { g ( v ) , g ( u  - v ) , g ( u  + v)} 

f ( t )  < g(t),  0 < t <- c 

.['(to) = g(to) to ~ (0, c) 

f ( t )  - g( t ) ,  0 <_ t <_ c. 

O< u - v , u  + v <  

Proof. W e may assume that 0 < to < c]2. Let 0 < v < to. Then 

f ( to)  < A{ f (v ) ,g ( t  o - v ) , g ( t  o + v)} < g(to). 

Because f ( t o ) =  g(to) and as A is strictly increasing, we have 
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f (v )  = g(v) O < v <-- t o 

f ( t  o + v) = g(t o + v) 

i.e. 
f ( t )  -- g(t) ,  0 <-t<--2t o. 

If to >= c/4, the lemma is proved. In case t~ = 2t o < c/2 we come to the conclusion 
that f(t)  = g(t) in [0, 2t~], and so on. 

LEMMA 7. For an arbitrary quadrangle A, B, C, D, with sides of length 

a, b, c, d, and diagonals of  length e , f ,  

(6) e 2 _[_f2 =< b 2 q_ d 2 q_ 2ac 

is valid with equality only in the case of AB and CD parallel. 

Proof. Let us denote the vectors AB, BC, CD, DA, by vl,v2,v3,v 4. Then 
v l + v 2 + v 3 + v + = O a n d  

e 2-I- f2  __. ~{[[Vl_I_V2112q-[Iv2q-v31[ 2"b HV3-bV't[]2-}-IIv4+v 1112} 

4- 
= E 

i=1 

4 
Z 11 V i I[ 2 "1-(/)1 "1- 03, V2 "~ V4) 
i=1 

4 4- 

= z I l v , ] 1 2 - l l o l + v 3 l l  2 __< z IIv, l l=-<l lvl l l  110311) 2 
i = 1  t=1  

- - -  II ~ II 2 + II~,lJ 2 + 2 I1 ~, I1 II v3 II 
= b 2 "Jr- d 2 "}- 2ac 

3. Proof of Theorem 3. For an arbitrary system {A~}N the relation 

2 r 2 r2+r2+l j  <-- r i , l+  i+t , l+2rij+lri+lj-1 

holds by Lemma 7. Hence 

N N N 
2 <  ~ 2 

(7) ~ r u = ri, 1 q- ~ ri,l+lri+l,l_l 
t=1 i = l  i=1 

N { N N }I[2 
<~ ~ r 2 2 2 = i,1 + • ~ (I = 2,3, . . . , N - 2 )  r i , I -  1 r i , l  + 1 • 

i=1 i = l  i=1 

Let us write 
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N 
pt = ~2 r~. 

t = l  

Then (Pi} ~ - '  satisfy the system (3). From Lemma 5 it follows that 

Pt < P~ sm I sin = qt 

and if Pt = qtPl for some l (1 < l < N - 2 )  then the equations 

Pl = P l + ( P t - l P t + , )  i12 (l = 2 , . . . , N - 2 )  

hold. But in this case - -  because Cauchy's inequality was applied in (7) 
7g 

r,.t+_.__._._L = (p,+~ ),/2 = s in ( /+  1)~- 

Z r ,+, . ,_,  \~_-~-! s i n ( / -  1) N 

and the segments A~A~+I+I and Ai+lAt+z are parallel (see Lemma 7), if {At} N 
is a non-collinear system. By Lemma 4, At = z(Rt)  in this case. 

Suppose that {Ai} N is maximal and collinear and 

Ai = (xt,0) i = 1 , . . . ,N 

in a Cartesian coordinate system. * 
Equations 

x~+, - x~ = A(xi+2 - x t+ , )  

cannot hold if A ~ 0, as XN+t = X~, i=  1 , . . . ,N ,  and we exclude the case A = 0 
since, in this case xt = Xz . . . . .  XN would be satisfied. Therefore there exist 
such i and j that 

(8) xi+,  - x~ = A~(xt+2 - x i+, )  

X j + I  - -  X I  u .  A j ( x ] +  2 _ Xl+l ) 

At ~ Aj. 

Taking into consideration the system {B~}N = {x~, y~} where 

Yi = Xi+l ( i ,=  1, . . . ,N),{ni} N 

cannot be collinear because of (8). It is obvious that (B~} N is maximal: 

{(xt - xl+~) 2 + (Y, - Yi+l) 2} 2 ]E (x~ - xt+l) 2 
E { ( x t -  x ,+,)~ + ( y t -  y,+,)~} 2 Y, ( x t -  x,+,)2" 

We have B t = z(Rt) , A t =/ ' (B, ) .  So At =P(z (R , ) )=  P'(Rt)  , where P , P '  are 
parallel projections into the line y = 0, and z e_T. 

*We may assume that  {At}iv has more than two different points. 
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Proof of theorem II. 
quality. 

Proof of Theorem I. 

L. GABOR [March 

It is evident from the theorem above and Jensen's ine- 

Let 0 < u < L and {/N} be a sequence of integers such 
that IN/N ~ u (N ~ oo). 

Let us assume that the sequences of equilateral polygons {~N}, {7J/V} inscribed 
in a curve C and a circle K,  both with length L, converges to C and K,  respectively. 

Applying Theorem II with g ( t ) =  t at each N, we get clearly 
NaN --* L and so 

(9) T f,er,=f~e,,dse <= 

where u is given, and PP'  is the length of the arc of C between P and P '  going 
from P to P'  counter-clockwise. 

The relation (9) implies that 

~'(u) = -~ jee,=ug(r~,e,)ds r g 

(9 is a monotone increasing and concave function), and if equality holds here 
for some u and C, then equality holds for this same u and C in (9) and so 

1 rZe, dse = - -~sin~-n - P~tU), (10) Pc(u) ' g  T ~ , = ,  

as the conditions of Lemma 6 are satisfied with 

f ( t )  = pc(t), g(t) = pk(t), a(x,y,z) = x + (yz) 

(The inequality p(u) < p(v) + [p(u + v) p(u - v)] llz can be derived from Lemma 7 
as we had obtained the relation Pi < P 1 + (P~- I Pi+ 1)1/2 in the proof of Theorem 
III).But (10) implies the identity 

def 
- - pc (u)  + pc(v)  + (pc(u  + v ) p c ( u  - v ) )  - 0 .  (11) 

Hence 

(12) 

and 

def 2 
~c(S1,,u,v ) =_ r2el + re2e 3 + 2rpie2ree3 -- r 2 2 PP2 D r p t p  3 ~ O,  

def  r p l p ,  
(13) 2,(se, u,v) =- : 

rep~ 

u + v  
sin - - - - ~  

sin ~ 

( P ~ C ;  C , u , v  given) 

where P1,P2,Ps are such that 
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P P 2  = P I P 3  = u ;  P P I  = P 2 P 3  = v .  

For ~c(sz,,u,v) ~_ 0; 

~c(sp, u,v)cls~, <= 24,c(u,v) = 0,  (14) 
JP  6 ¢  

~c(se, u, v) is continuous in se, and Cauchy's inequality has been applied in (14). 
Let points A I , A z , A 3 , A , , A s  ~ C be such that 

(15) AxA z = AeA 3 = A3A 4 = A4A s = AsA1 = L/5. 

Now we construct a sequence nN of polygons inscribed in C such that 
nN = Z (n;~) where {n~} = K is regular, and z e T. 
Let nl consist of the points At (i = 1, 2,.. . ,  5). If  we have nN = < AN, i = 1,..., 5N> 
then the points of nN+ ~ are defined by the relations 

AN+IAN+I = L 
-~l ~',+1 5N+1, i = 1 , ' " , 5  N, nN-----TrN+x. 

Suppose that C is not collinear. In this case nN has the same property if N is 
sufficiently large: N > No. 

From (12), (13) and Lemma 4 

7r N = 'rN(n~) (N = No, No+ 1, ' " )  

But evidently 

,CNo -~ ,rNo+l ----- ,CNo + 2 -~ . . .  de..~ ,~ . 

Letting N approach infinity, we get C = z(K) i.e. C is an ellipse. The curve C 
cannot differ from K as in this case the aifme mapping z would change the length 
of  K ,  which contradicts (15). 

I f  points of  C are collinear, then ~r~ is also collinear. (N ---1,2, 3, .-.). There- 
fore from (12), and (13) 

~N ---- P N ( R N )  ( N - -  1 , 2 ,  . . . ) ,  

PN is a projection on the line containing ~qv. 
Evidently we have P1 = P 2  . . . . .  PN . . . .  d~ p ,  so C = P(K) .  But this 

contradicts (15) by the above argument. Hence C cannot be collinear. 
As we have 

1 f ~  3r(u)du,  Sr = -£ 

our theorem is proved. 
R m ~ K .  1) Let us assume that Y~_ A Y +  B with the notations of lemma 5. 
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It is easy to show, that the iteration Yo = Y, YK = A YK-1 + B, k = 1,2,... is in- 
creasing and converges. This fact does more elementary the proof  of  this lemma. 

2) Let be d the transfinite diameter of C. Then we have 

d = e x p ( n ~ x ~ 2  fcfcPePQl°greQdsedsQ ) 

where O = fc pedse I-5]. 
To examine the minimum of the integral 

1 , fcf  logreQdsedSQ 

for convex curves is perhaps easier as as to examine the minimum of  d, and this 
way we could get a good lower bound for d/L. 

3) The classical isoperimetric inequality follows from Theorem 1 using the 
formula of  area 

16a2 = f c f c r2~cos~eedsedse 

due to L. R6dei and B. Sz. Nagy [4]. 

4) Inequality of  Wirtinger can be roved completely by a slight modifi- 
cation of  our proof  of  Theorem 1. 

LITERATURE 

1. W. Blaschke, Fine isoperimetrische Eigenschaft des Kreises, Math. Zeitschrift I (1918), 
52-58. 

2. T. Carleman, t)ber eine isoperimetrische Aufgabe und ihre physikalisehen Anwendungen, 
Math. Zeitschrift 3 (1919). 

3. Fan, K. O. Taussky and J. Todd, Discrete analogues of inequalities of Wirtinger, Monatsh. 
Math. Physik 59 (1955), 73-90. 

4. L. R6dei and B. Sz. Nagy, Eine Vorallgemeinung der Heronisehe Formel, Publ. Math. 
Debrecen (1950). 

5. G. P61ya and G. Szegtl, Isoperimetric inequalities in Mathematical Physics, Princeton 
University Press, (1959). 

JOZSEF ATTILA UNIVERSITY OF SZEGED, 
HUNOARY 


